第12章 pandas高级应用
前面的章节关注于不同类型的数据规整流程和NumPy、pandas与其它库的特点。随着时间的发展,pandas发展出了更多适合高级用户的功能。本章就要深入学习pandas的高级功能。
12.1 分类数据
这一节介绍的是pandas的分类类型。我会向你展示通过使用它,提高性能和内存的使用率。我还会介绍一些在统计和机器学习中使用分类数据的工具。
背景和目的
表中的一列通常会有重复的包含不同值的小集合的情况。我们已经学过了unique和value_counts,它们可以从数组提取出不同的值,并分别计算频率:
In [10]: import numpy as np; import pandas as pd
In [11]: values = pd.Series(['apple', 'orange', 'apple',
....: 'apple'] * 2)
In [12]: values
Out[12]:
0 apple
1 orange
2 apple
3 apple
4 apple
5 orange
6 apple
7 apple
dtype: object
In [13]: pd.unique(values)
Out[13]: array(['apple', 'orange'], dtype=object)
In [14]: pd.value_counts(values)
Out[14]:
apple 6
orange 2
dtype: int64许多数据系统(数据仓库、统计计算或其它应用)都发展出了特定的表征重复值的方法,以进行高效的存储和计算。在数据仓库中,最好的方法是使用所谓的包含不同值的维表(Dimension Table),将主要的参数存储为引用维表整数键:
可以使用take方法存储原始的字符串Series:
这种用整数表示的方法称为分类或字典编码表示法。不同值得数组称为分类、字典或数据级。本书中,我们使用分类的说法。表示分类的整数值称为分类编码或简单地称为编码。
分类表示可以在进行分析时大大的提高性能。你也可以在保持编码不变的情况下,对分类进行转换。一些相对简单的转变例子包括:
重命名分类。
加入一个新的分类,不改变已经存在的分类的顺序或位置。
pandas的分类类型
pandas有一个特殊的分类类型,用于保存使用整数分类表示法的数据。看一个之前的Series例子:
这里,df['fruit']是一个Python字符串对象的数组。我们可以通过调用它,将它转变为分类:
fruit_cat的值不是NumPy数组,而是一个pandas.Categorical实例:
分类对象有categories和codes属性:
你可将DataFrame的列通过分配转换结果,转换为分类:
你还可以从其它Python序列直接创建pandas.Categorical:
如果你已经从其它源获得了分类编码,你还可以使用from_codes构造器:
与显示指定不同,分类变换不认定指定的分类顺序。因此取决于输入数据的顺序,categories数组的顺序会不同。当使用from_codes或其它的构造器时,你可以指定分类一个有意义的顺序:
输出[foo < bar < baz]指明‘foo’位于‘bar’的前面,以此类推。无序的分类实例可以通过as_ordered排序:
最后要注意,分类数据不需要字符串,尽管我仅仅展示了字符串的例子。分类数组可以包括任意不可变类型。
用分类进行计算
与非编码版本(比如字符串数组)相比,使用pandas的Categorical有些类似。某些pandas组件,比如groupby函数,更适合进行分类。还有一些函数可以使用有序标志位。
来看一些随机的数值数据,使用pandas.qcut面元函数。它会返回pandas.Categorical,我们之前使用过pandas.cut,但没解释分类是如何工作的:
计算这个数据的分位面元,提取一些统计信息:
虽然有用,确切的样本分位数与分位的名称相比,不利于生成汇总。我们可以使用labels参数qcut,实现目的:
加上标签的面元分类不包含数据面元边界的信息,因此可以使用groupby提取一些汇总信息:
分位数列保存了原始的面元分类信息,包括排序:
用分类提高性能
如果你是在一个特定数据集上做大量分析,将其转换为分类可以极大地提高效率。DataFrame列的分类使用的内存通常少的多。来看一些包含一千万元素的Series,和一些不同的分类:
现在,将标签转换为分类:
这时,可以看到标签使用的内存远比分类多:
转换为分类不是没有代价的,但这是一次性的代价:
GroupBy使用分类操作明显更快,是因为底层的算法使用整数编码数组,而不是字符串数组。
分类方法
包含分类数据的Series有一些特殊的方法,类似于Series.str字符串方法。它还提供了方便的分类和编码的使用方法。看下面的Series:
特别的cat属性提供了分类方法的入口:
假设我们知道这个数据的实际分类集,超出了数据中的四个值。我们可以使用set_categories方法改变它们:
虽然数据看起来没变,新的分类将反映在它们的操作中。例如,如果有的话,value_counts表示分类:
在大数据集中,分类经常作为节省内存和高性能的便捷工具。过滤完大DataFrame或Series之后,许多分类可能不会出现在数据中。我们可以使用remove_unused_categories方法删除没看到的分类:
表12-1列出了可用的分类方法。

为建模创建虚拟变量
当你使用统计或机器学习工具时,通常会将分类数据转换为虚拟变量,也称为one-hot编码。这包括创建一个不同类别的列的DataFrame;这些列包含给定分类的1s,其它为0。
看前面的例子:
前面的第7章提到过,pandas.get_dummies函数可以转换这个分类数据为包含虚拟变量的DataFrame:
12.2 GroupBy高级应用
尽管我们在第10章已经深度学习了Series和DataFrame的Groupby方法,还有一些方法也是很有用的。
分组转换和“解封”GroupBy
在第10章,我们在分组操作中学习了apply方法,进行转换。还有另一个transform方法,它与apply很像,但是对使用的函数有一定限制:
它可以产生向分组形状广播标量值
它可以产生一个和输入组形状相同的对象
它不能修改输入
来看一个简单的例子:
按键进行分组:
假设我们想产生一个和df['value']形状相同的Series,但值替换为按键分组的平均值。我们可以传递函数lambda x: x.mean()进行转换:
对于内置的聚合函数,我们可以传递一个字符串假名作为GroupBy的agg方法:
与apply类似,transform的函数会返回Series,但是结果必须与输入大小相同。举个例子,我们可以用lambda函数将每个分组乘以2:
再举一个复杂的例子,我们可以计算每个分组的降序排名:
看一个由简单聚合构造的的分组转换函数:
我们用transform或apply可以获得等价的结果:
内置的聚合函数,比如mean或sum,通常比apply函数快,也比transform快。这允许我们进行一个所谓的解封(unwrapped)分组操作:
解封分组操作可能包括多个分组聚合,但是矢量化操作还是会带来收益。
分组的时间重采样
对于时间序列数据,resample方法从语义上是一个基于内在时间的分组操作。下面是一个示例表:
这里,我们可以用time作为索引,然后重采样:
假设DataFrame包含多个时间序列,用一个额外的分组键的列进行标记:
要对每个key值进行相同的重采样,我们引入pandas.TimeGrouper对象:
我们然后设定时间索引,用key和time_key分组,然后聚合:
使用TimeGrouper的限制是时间必须是Series或DataFrame的索引。
12.3 链式编程技术
当对数据集进行一系列变换时,你可能发现创建的多个临时变量其实并没有在分析中用到。看下面的例子:
虽然这里没有使用真实的数据,这个例子却指出了一些新方法。首先,DataFrame.assign方法是一个df[k] = v形式的函数式的列分配方法。它不是就地修改对象,而是返回新的修改过的DataFrame。因此,下面的语句是等价的:
就地分配可能会比assign快,但是assign可以方便地进行链式编程:
我使用外括号,这样便于添加换行符。
使用链式编程时要注意,你可能会需要涉及临时对象。在前面的例子中,我们不能使用load_data的结果,直到它被赋值给临时变量df。为了这么做,assign和许多其它pandas函数可以接收类似函数的参数,即可调用对象(callable)。为了展示可调用对象,看一个前面例子的片段:
它可以重写为:
这里,load_data的结果没有赋值给某个变量,因此传递到[ ]的函数在这一步被绑定到了对象。
我们可以把整个过程写为一个单链表达式:
是否将代码写成这种形式只是习惯而已,将它分开成若干步可以提高可读性。
管道方法
你可以用Python内置的pandas函数和方法,用带有可调用对象的链式编程做许多工作。但是,有时你需要使用自己的函数,或是第三方库的函数。这时就要用到管道方法。
看下面的函数调用:
当使用接收、返回Series或DataFrame对象的函数式,你可以调用pipe将其重写:
f(df)和df.pipe(f)是等价的,但是pipe使得链式声明更容易。
pipe的另一个有用的地方是提炼操作为可复用的函数。看一个从列减去分组方法的例子:
假设你想转换多列,并修改分组的键。另外,你想用链式编程做这个转换。下面就是一个方法:
然后可以写为:
12.4 总结
和其它许多开源项目一样,pandas仍然在不断的变化和进步中。和本书中其它地方一样,这里的重点是放在接下来几年不会发生什么改变且稳定的功能。
为了深入学习pandas的知识,我建议你学习官方文档,并阅读开发团队发布的文档更新。我们还邀请你加入pandas的开发工作:修改bug、创建新功能、完善文档。
Last updated