In [24]: data['category'] = pd.Categorical(['a', 'b', 'a', 'a', 'b'],
....: categories=['a', 'b'])
In [25]: data
Out[25]:
x0 x1 y category
0 1 0.01 -1.5 a
1 2 -0.01 0.0 b
2 3 0.25 3.6 a
3 4 -4.10 1.3 a
4 5 0.00 -2.0 b
In [86]: train = pd.read_csv('datasets/titanic/train.csv')
In [87]: test = pd.read_csv('datasets/titanic/test.csv')
In [88]: train[:4]
Out[88]:
PassengerId Survived Pclass \
0 1 0 3
1 2 1 1
2 3 1 3
3 4 1 1
Name Sex Age SibSp \
0 Braund, Mr. Owen Harris male 22.0 1
1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1
2 Heikkinen, Miss. Laina female 26.0 0
3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1
Parch Ticket Fare Cabin Embarked
0 0 A/5 21171 7.2500 NaN S
1 0 PC 17599 71.2833 C85 C
2 0 STON/O2. 3101282 7.9250 NaN S
3 0 113803 53.1000 C123 S
In [89]: train.isnull().sum()
Out[89]:
PassengerId 0
Survived 0
Pclass 0
Name 0
Sex 0
Age 177
SibSp 0
Parch 0
Ticket 0
Fare 0
Cabin 687
Embarked 2
dtype: int64
In [90]: test.isnull().sum()
Out[90]:
PassengerId 0
Pclass 0
Name 0
Sex 0
Age 86
SibSp 0
Parch 0
Ticket 0
Fare 1
Cabin 327
Embarked 0
dtype: int64
In [91]: impute_value = train['Age'].median()
In [92]: train['Age'] = train['Age'].fillna(impute_value)
In [93]: test['Age'] = test['Age'].fillna(impute_value)
In [94]: train['IsFemale'] = (train['Sex'] == 'female').astype(int)
In [95]: test['IsFemale'] = (test['Sex'] == 'female').astype(int)
In [96]: predictors = ['Pclass', 'IsFemale', 'Age']
In [97]: X_train = train[predictors].values
In [98]: X_test = test[predictors].values
In [99]: y_train = train['Survived'].values
In [100]: X_train[:5]
Out[100]:
array([[ 3., 0., 22.],
[ 1., 1., 38.],
[ 3., 1., 26.],
[ 1., 1., 35.],
[ 3., 0., 35.]])
In [101]: y_train[:5]
Out[101]: array([0, 1, 1, 1, 0])
In [102]: from sklearn.linear_model import LogisticRegression
In [103]: model = LogisticRegression()
In [105]: y_predict = model.predict(X_test)
In [106]: y_predict[:10]
Out[106]: array([0, 0, 0, 0, 1, 0, 1, 0, 1, 0])
(y_true == y_predict).mean()
In [107]: from sklearn.linear_model import LogisticRegressionCV
In [108]: model_cv = LogisticRegressionCV(10)
In [109]: model_cv.fit(X_train, y_train)
Out[109]:
LogisticRegressionCV(Cs=10, class_weight=None, cv=None, dual=False,
fit_intercept=True, intercept_scaling=1.0, max_iter=100,
multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,
refit=True, scoring=None, solver='lbfgs', tol=0.0001, verbose=0)
In [110]: from sklearn.model_selection import cross_val_score
In [111]: model = LogisticRegression(C=10)
In [112]: scores = cross_val_score(model, X_train, y_train, cv=4)
In [113]: scores
Out[113]: array([ 0.7723, 0.8027, 0.7703, 0.7883])